

CHEMICAL RECYCLING OF COTTON AND POLYCOTTON TEXTILES

Dr. Jens Oelerich

Sustainable & Functional Textiles, School of Creative Technology, Saxion University of Applied Sciences, Enschede, The Netherlands.

> Telaketju R&D webinar September 24, 2020

Bachelor Program *Fashion and Textile Technologies* (higher textile education since 1919)

Master Program Innovative Textile Development (since 2014)

27 000 Students

Enschede Deventer Apeldoorn

Research group Sustainable & Functional Textiles Applied Science in Textiles

Research group leader: Dr. Jan Mahy

Coordination of research line Sustainable Textiles: Dr. Jens Oelerich

Expertise: Textile Technology, Fashion Design, Circular Textiles, Rapid Prototyping, Sustainable Chemistry

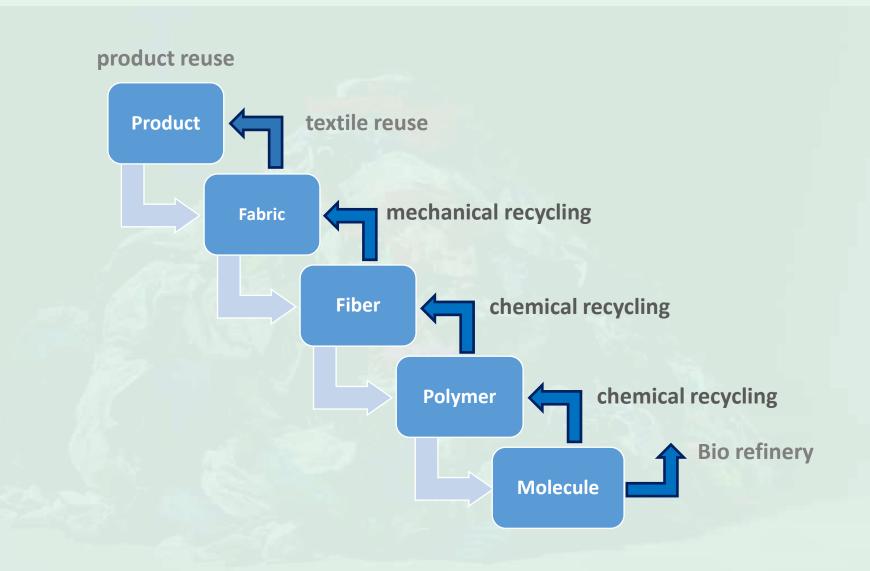
>100 Years Industrial experience

Research group Sustainable & Functional Textiles Applied Science in Textiles

Sustainable Textiles

Functional Textiles

Sustainable Textiles


Reduce, Reuse, Recycle

Mechanical and Chemical recycling of cellulosic textiles

Applied Science

Intensive collaboration with industry, education and research

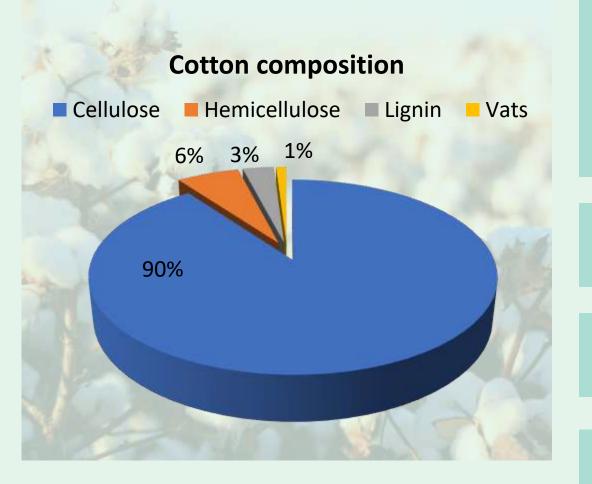
Research activities

Textile fiber production

Worldwide textile fiber production in 2018 ~111 Mt

- 79 Mt synthetic fibers
- 32 Mt natural fibers (26 Mt cotton fibers)

1 Recycling of clothing into the same or similar quality applications


2 Recycling of clothing into other, lower-value applications such as insulation

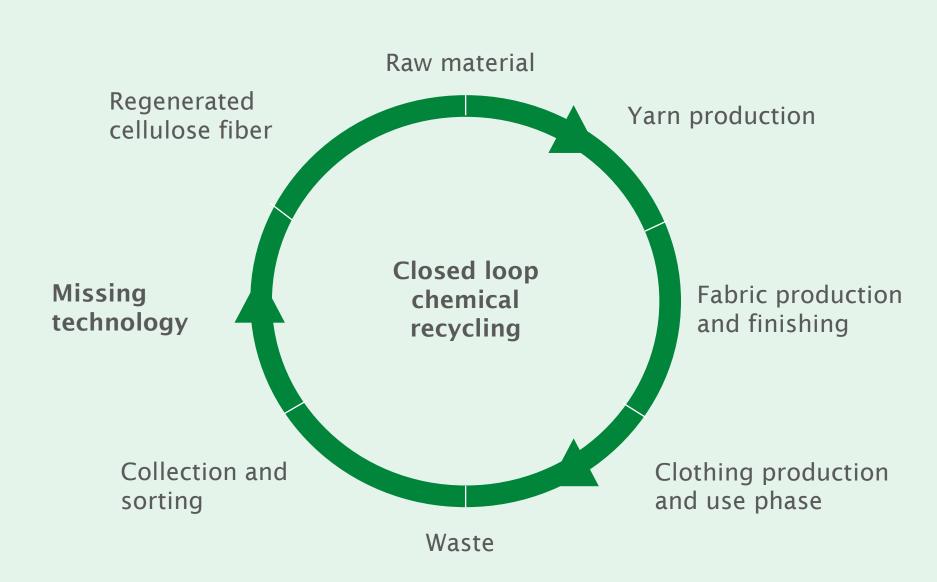
material, wiping cloths, or mattress stuffing

3 includes factory offcuts and overstock liquidation

4 Plastic microfibres shed through the washing of all textiles released into the ocean Source: Circular Fibres initiative analysis – for details see Appendix B of the full report tiny.cc/fibres

Cotton

>9 Mt textile products are incinerated in the EU each year


>25% cotton

Large part can be used for chemical recycling

Cleaned virgin cotton: 88-94% α-Cellulose

Cleaned cotton waste: 96-98% α-Cellulose

Cellulose circle

Technological approaches

Preparation of cellulose pulp from cotton waste

- ReNewcell (pre- and post-consumer cotton waste)
- WornAgain (Polyester/cotton blends)
- Cumapol (Polyester/cotton blends in collaboration with Saxion)

Fiber production from cotton waste

- Lenzing/Refibra (Lyocell, up to 30% pre/post-consumer waste)
- Infinite Fiber Company (Carbamate Technology, cotton waste and other cellulosics)
- Ioncell and Deakin University (Ionic liquids, cotton textile waste)
- SaXcell (Lyocell, 100% pre/post-consumer cotton waste)

Cellulose circle

Key aspects in the development of the SaXcell fiber

Transformation of waste into a valuable raw material

Fiber needs to fit in existing supply chain

No investments in processing machinery needed

Large scope of applications

Sustainable production and processing

SaXcell recycling process

Patented process to adjust cellulose DP

Parameter	Advantages of the patented process
Time	80% shorter
Temperature	20°C reduction
Hazards	no
Neutralization	Not necessary
Washing steps	50% less

SaXcell fiber production and properties

- staple fibers (1.8 dtex, 38 mm)
- very good mechanical fiber properties
- suitable for common textile processing

Sample		SaXcell fiber properties
Fiber fineness	dtex	1.81
Elongation	%	12.7
Tenacity, cond.	cN/tex	43.6

Processing of SaXcell fibers

High Tech Yarn & Coatings

Rotor spun yarn Nm 17, Nm 34/2

100% SaXcell® fiber in warp and weft

Mechanical properties 100% SaXcell fabrics

Tensile strength and elongation to break ISO 13934

		Weft - Strength [N]	Weft - Elong. [%] \	Narp - Strength [N]	Warp - Elong. [%]
drv	SaXcell original	767	11,6	708	20,0
ary	SaXcell bleached	600	8,9	604	11,1
	Cotton	474	7,4	525	10,6

_		Weft - Strength [N]	Weft - Elong. [%] \	Narp - Strength [N]	Warp - Elong. [%]
wet	SaXcell original	701	18,4	611	31,4
	SaXcell bleached	425	13,3	430	16,4
	Cotton	429	10,4	500	14,2

Comparable to existing cellulose fibers

100% SaXcell garments tailored at Humanoid BV

50% cotton / 50% SaXcell towels

Ring spinning

100% SaXcell ring spun yarn

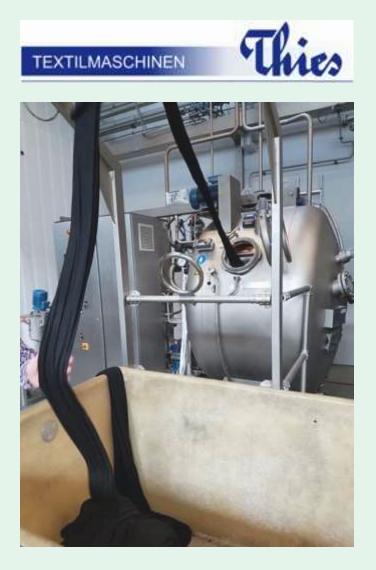
- small problems with electrostatic charging
- fineness of Nm 68 were realized

Quotes

"Feels like combed cotton" "Better processible than similar fibers"

Industrial knitting

Aldo Nägeli AG


Dyeing with reactive dyes

Dyeing of knitted SaXcell fabric with Benzema Go reactive dye

Dark black:

SaXcell: 5% dyestuff, 50 l/kg water consumption

Cotton: 9% dyestuff, ~150 l/kg water consumption

Life cycle assessment SaXcell pulp

Executed by CE Delft

Challenges:

• Laboratory scale experiments

→ Industrial scale application

• Availability of data

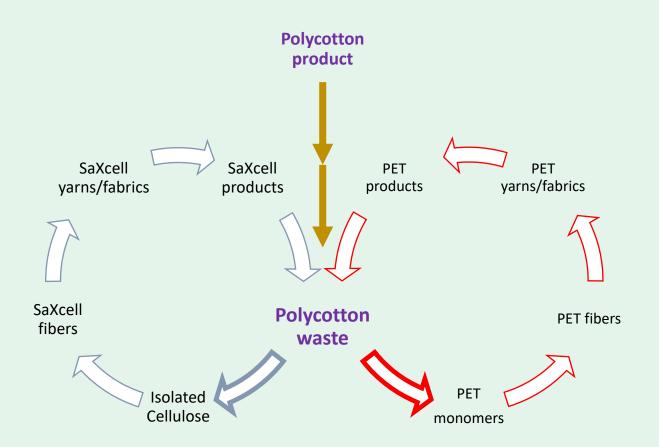
Feedstock	Comparison with average impact of
	existing pulping processes*
100% cotton waste white	Lower in all impact categories
100% cotton waste white (new process)	Lower in all impact categories
Cotton / polyester blend, white	Lower or comparable
Cotton / polyester blend, dark blue	Higher in most impact categories
*laga al an anaitalala alata fuana Essimumat	

based on available data from Ecoinvent

From Workwear to Workwear

Workwear material cycle

SaXcell[®] workwear trousers


In collaboration with Havep BV

Breakthrough in polycotton recycling

Breakthrough in polycotton recycling Recycling concept

Acknowledgemetns:

Technical support: Rieter AG Aldo Nägeli AG Thies GmbH & Co. KG Artofil BV WeVoTex BV Humanoid BV Frankenhuis BV JB Textiles BV Johan van den Acker Textielfabriek BV

> Financial support: TechForFuture C&A Foundation Boergroep BV WeVoTex BV Havep BV Lavans BV SaXcell BV

CHEMICAL RECYCLING OF COTTON AND POLYCOTTON TEXTILES

Dr. Jens Oelerich

Sustainable & Functional Textiles, School of Creative Technology, Saxion University of Applied Sciences, Enschede, The Netherlands.

> Telaketju R&D webinar September 24, 2020