Circular Design conditions: Evidences from Re:textile project

Dr. Rudrajeet Pal

Associate Professor, PhD Swedish School of Textiles, University of Borås Scientific lead: Re:textile

Finnish-Swedish Textile Circularity Day 14th January 2021

RE:TEXTILE – Objectives

Develop new garments to last long through design-led innovations, and thus create new business areas and services that extend the life of the garment and create economic growth.

Develop new design principles, business models, and production systems that enable circular flows in the textile industry.

The contamination problem

Value loss along value chain

Power to synthesize a change through initial garment design

Design's power to synthesize a change

Initial garment design

Design and construction has a huge impact on sustainability in terms of material & component choices, production processes, footprints

□ Conventional apparel design (followed in mainstream fashion industry) impacts 50-55% in terms of resource consumption and footprints

With conventional design and construction, scope and scale for designing circularity is limited (due to technological limitations, lack of economic viability)

□ In the near future this is aqggrevated by higher fractions for blends.

How can the design process synthesize enhanced circularity?

Design for longevity

115 years - 1 miljon hour

Design for recyclability

Conditional Design Approach

Defn. Delivering and implementing selective and optimal choices of product design which when subjected results in either better recyclability or longevity in the value loops

Design for recyclability – Monomaterial, Modularity, techniques for disassembly etc.

Design for longevity (Quality, timelessness, redesignability) – Modularity, incremental design

Often in Conflict

Systematic Conditional design classifications

DESIGN CLASSIFICATION

NO LIMITS (e.g. Blends)

С

B

A

Manual separation possible by module removal

100% Monomaterial

A1 – 100% Mono A2 – 100% Mono after Auto. separation **C** – Non-mono in composition (Not easy to separate), e.g. polyester-cellulose blends

B – Contains Non-mono components and needs manual separation by cutting, detaching etc. e.g. removal of labels, pockets, buttons, etc.

A1 - All material component incl. Trimmings, sewing threads, labels etc. are of the same basic material, e.g. polyester or cellulose

A2 – Contains Non-mono components but can be separated in the mechanical recycling processes (Automatically) after cutting but before shredding, e.g. removal of heavy components such as metal zippers, buttons, etc.

CODING SCHEME

Ex. C – (ab): POLYESTER-CELLULOSE BLEND

B – (A1a): MONO-POLYESTER AFTER MANUAL SEPARATION

(A1a): MONO-POLYESTER

...

(A2b): MONO-CELLULOSE AFTER AUTO. SEPARATION

Design process can classify products from start

Modular design-led construction principle

Design: Anna Lidström

Experiment 2 X

ltem	Information	Cost		Pricetag	Classification (With current recycling technologies)	Highest possible classification
		Material	Labour			
Shell fabric	Windstretch 180g/m2 - 70% Polyamid, 20 % Polyester, 10 % Elastan Bluesign approved, Reinforcement 100% Kevlar, Shoe cleaning area, 100 % Polyester	80 kr/m2	90 min 180 kr Total production cost 460 SEK	2300 SEK	с	C, as this is an example on modularity, the ambition is not to have as high classification as possible but to
Sewing thread	Polyester	50 SEK/kg				showcase modularity.
Zipper	Polyester & Metal	30 SEK				

C

Experiment 3 X **жночым** Mono-material

	ltem	Classification	Highest possible classification	
	1. Houdini C9 jacket (Green jacket)	A2. Polartec® Alpha Insula- tion, 100% polyester. Teijin C9 ripstop, 100% recycled polyester. Zipper: Polyester ribbons with metal closer.	A1. Zipper closing mechanism needs to be made of metal	
	2. Houdini Wooler Hoodie (Black sweater)	B. 100% mulesing-free merino wool, Wooler GridMerino 17.5 microns. Zipper: Polyester ribbons with metal closer. Pocket liners: Polyester	A2. Zipper closing mechanism needs to be made of metal. Zipper: Wear2 assembly technol- ogy	
-	3. Houdini Commute Pant (Blue trousers)	A2. 100% polyester, Bluesign certified, 282 g/m ²	A1.	

Three principles

DESIGN **CIRCULAR STRATEGIES IN VALUE CHAINS STRATEGIES DESIGN FOR LONGEVITY DESIGN FOR RECYCLABILITY** The entire garment is made of a mono-fibre material (e.g Adresses recycling cotton) and trimmings, which Α requirements (fibre to can be separated in the fibre) mechani- cal recycling 100%* Mono-material process The garment is made up by using Adresses both redesign modules, which are easily (longevity) and recycling separated in a re-process. Each В requirements. Requires module is mono-material separation of modules Modular The design is made so that it can Combination of longevity and A be incrementally updated during С or B is optimal the life of the garment Incremental

Feasibility of conditional design

Organizing a circular textile value chain by design principles

Authors: Jan Carlsson, Alison Gwilt, Jonas Larsson, Heikki Mattila, Rudrajeet Pal, Håkan Torstensson. Design author: Anna Lidström

Link: https://issuu.com/hogskolaniboras/doc s/rapport_conditional_design

