

WP1 CIRCULAR VALUE CHAINS

T1.1 IMPACTS STUDIES: ENVIRONMENTAL IMPACTS

- Comparing the current global value chain with a potential future circular value chain

CASE: GREY SWEATSHIRT

- Weight 305 g
- Made of 70 % cotton and 30 % PET (linear case) in Asia
- Made of 70 % mechanically recycled cotton and 30 % Lyocell (circular case) in Europe

Processes of the product chain in a potential future circular version.

LINEAR VALUE CHAIN

The assumption of the current global value chain is presented below.

The entire value chain should be taken into account when evaluating the environmental impacts of the value chain. In the following slides, the limitations of this study are presented.

CIRCULAR VALUE CHAIN

The studied potential future circular value chain is presented below. There are different feedstocks, transportations and locations than in the linear value chain. Also, it is assumed that no dyeing is needed when using similarly colored textile wastes as raw material.

ASSUMPTIONS AND LIMITATIONS

- No dying processes needed in the circular case (recycled materials are sorted based on colour)
- Manufacturing of external parts (buttons etc.) are not included in the study
- Carbon stored in fibers = excluded
- All material loss (15,2%) is removed as waste during the clothing manufacture phase
 - Further treatment of reject materials is not considered, unless it was a part of the correspondent emission factor
- Only one-way transportations included
- Fuel production emissions are not included in transportations
- Polyester fiber transportation not included yet (linear case)
- Most of the data represent only average values; local variation in production methods etc. is not known

CALCULATIONS

LINEAR CASE									CIRCULAR									
Production of fibers:	Amount	Unit		>>> Emissi	ions per sv	veatshirt			Production of fibers:	Amou	int U	Init		>>> Emissio	ons per sw	veatshirt		
Cotton	0,251769	kg		0,359526	kg (CO2e)				Cotton	0,251	L769 k	g		0,083084	kg (CO2e)			
Polyester	0,107901	kg		0,449947	kg (CO2e)				Lyocell	0,107	7901 k	g		0,366863	kg (CO2e)			
>>> FIBERS, TOTAL	0,35967	kg		0,809473	kg (CO2e)				>>> FIBERS, TOTAL	0,35	967 k	g		0,449947	kg (CO2e)			
Sweatshirt manufacturing:	Amount	Unit		>>> Emissi	ions per sv	veatshirt			Sweatshirt manufacturing:					>>> Emissio	ons per sw	veatshirt		
Yarn spinning	0,35967	kg		1,554133	kg (CO2e)				Yarn spinning	0,33	5967 k	g		1,554133	kg (CO2e)			
Fabric production + dyeing & finishing	0,35967	kg		2,141114	kg (CO2e)				Fabric production	0,33	5967 k	g		1,214245	kg (CO2e)			
Clothing manufacture	0,35967	kg		0,132358	kg (CO2e)				Clothing manufacture	0,33	5967 k	g		0,132358	kg (CO2e)			
>>> MANUFACTURING, TOTAL				3,827606	kg (CO2e)				>>> MANUFACTURING, TOTAL					2,900737	kg (CO2e)			
Transportations:			Distance	Unit	>> tkm	>>> Emiss	sions per s	sweatshirt	Transportations:				Distance	Unit	>> tkm	>>> Emiss	ions per sw	eatshirt
Ship transportation: cotton fibers to ya	arn spinning	,	6026	km	1,517159	0,04248	3 kg (CO2	e)	Truck transportation: lyocell fi	ibers to yarı	n spini	ning	2304	km	0,248604	0,009696	kg (CO2e)	
Truck transportation: yarn to fabric pro	duction		280	km	0,100708	0,003928	8 kg (CO2	e)	Truck transportation: recycled	cotton to y	arn sp	inning	4152	km	1,045344	0,040768	kg (CO2e)	
Ship transportation: fabric to clothing	manufactur	e	4662	km	1,676781	0,04695	5 kg (CO2	e)	Truck transportation: yarn to f	abric produ	ction		1972	km	0,709269	0,027661	kg (CO2e)	
Ship transportation: sweatshirt to who	lesales in E	urope	14777	km	4,506985	0,126196	5 kg (CO2	e)	Truck transportation: fabric to	clothing ma	anufad	ture	2385	km	0,857813	0,033455	kg (CO2e)	
>>> TRANSPORTATIONS, TOTAL			25745	km	7,801632	0,219553	8 kg (CO2	e)	Truck transportation: sweatshi	irt to whole	sales	in Europ	2041	km	4,506985	0,175772	kg (CO2e)	
									>>> TRANSPORTATIONS, TOTA	L			12854	km	7,368014	0,287353	kg (CO2e)	
>>> Linear case, total emissions						4,856632	2 kg (CO2	e)										
									>>> Circular case, total emission	ons						3,638037	kg (CO2e)	

Sample of emission calculations made in Excel. The used emission factors are found from another sheet.

DATA AND EMISSION FACTORS

Production of raw materials and chemicals					
Cotton fibers	1,428 kg (CO2e) / kg	Cotton Incorporated 2016			
Polyester fibers	4-5 kg (CO2e) / kg	Ecoinvent 3.8			
Lyocell fibers	3,4 kg (CO2e) / kg	Schultz & Shuresh 2017			
Mechanical recycling of cotton + incineration of non-spinnable fraction	0,33 kg (CO2e) / kg	European Commission 2021			
<u>Transportations</u>					
Diesel truck, 40 t, 70 % load, highway driving	0,039 kg (CO2e) / tkm	VTT Linasto			
Container ship, 2000 TEU, 65 % load	0,028 kg (CO2e) / tkm				
Textile manufacturing processes					
Knit yarn production	4,321 kg (CO2e) / kg				
Garment production processes - knit collar shirt	3,376 kg (CO2e) / kg	Catton Incorporated 2016			
Batch dyeing - knit collar shirt	2,577 kg (CO2e) / kg	cotton incorporated 2010			
Cut-and-sew - knit collar shirt	0,368 kg (CO2e) / kg				

SOURCES OF THE EMISSION FACTORS AND OTHER DATA:

Cotton Incorporated, 2016. LCA update of cotton fiber and fabric life cycle inventory. Available from: https://resource.cottoninc.com/LCA/2016-LCA-Full-Report-Update.pdf

European Commission, 2021. Study on the technical, regulatory, economic and environmental effectiveness of textile fibres recycling. Available from: https://op.europa.eu/en/publication-detail/-/publication/739a1cca-6145-11ec-9c6c-01aa75ed71a1

Ecoinvent 3.8 database

Schultz & Shuresh, 2017. Life Cycle Assessment Comparing Ten Sources of Manmade Cellulose Fiber. Available from: https://cdn.scsglobalservices.com/files/resources/SCS-Stella-LCA-MainReport-101017.pdf

VTT, 2017. LIPASTO - traffic emissions database. Available from: http://lipasto.vtt.fi/yksikkopaastot

Schultz & Shuresh, 2017. Life Cycle Assessment Comparing Ten Sources of Manmade Cellulose Fiber. Available from: https://cdn.scsglobalservices.com/files/resources/SCS-Stella-LCA-MainReport-101017.pdf

- The secondary data needed in calculations is listed here.
- As the information sources vary, there may be some inconsistency in the study methods behind these emission factors.
- Most of the data is from public sources, representing the average emissions from given process.

PRELIMINARY RESULTS

GHG emissions per sweatshirt [kg CO2e]

- With the given limitations, it seems that the circular case would produce 25 % less greenhouse gas emissions.
- Most savings come from the avoided dyeing process, but also different fiber inputs could have some climate benefits.
- Actual global warming potentials may be very different, if e.g. soil organic carbon and local energy production methods were accounted.
- \rightarrow These results must be viewed only as preliminary examples!

CONCLUSION

- With the limitations and assumptions used in the study, GHG emissions decrease when moving from a linear product chain to a circular economy product chain as well as global warming potential of the product manufacture will decrease.
- The biggest change is in clothing manufacture phase. Fabric is not dyed in the circular version, which proved to be the most significant factor.
- Emissions from fiber production decrease by about half when comparing linear and circular cases. Biogenic carbon balance could not be assessed in this study.
- Even though the total transportation distance is smaller in the circular case, the increased share of truck transports would bring more emissions. The role of this is negligible compared to other processes.

THOUGHTS AND QUESTIONS DURING THE STUDY

- Data needed from real life to get a reliable result
- If the demand of virgin fibers decrease, less natural resources are consumed in the circular textile system
 - For example: less land use and water consumption, if cotton cultivation is avoided
 - Actual saved amounts are hard to assess yet
- In this study, the focus was on global warming potential: the assessment of many other environmental impacts would also be VERY important
- Are the assumptions realistic? E.g., no dyeing process needed in circular case...
- Local variance: which parameters will change when moving from Asia to European countries? How will they change?
 - Currently, clothing manufacture processes are "world average" for knit collar shirt
 - Assumptions behind the emission factors: energy production methods, wastewater treatment etc.
- How do the processes change with different fiber input?
- Circular production's effect on the textile industry and consumer habits?